黄忠伟,兰州大学大气科学学院教授、博士生导师、院长,兰州大学萃英学者,甘肃省领军人才,教育部青年长江学者。长期从事激光雷达大气遥感、生物气溶胶探测及其气候效应研究,已在BAMS、JGR、ACP、ERL等期刊发表SCI论文102篇(H-index30),主持国家自然科学基金委国家重大科研仪器研制项目、重点国际合作项目、科技部国家重点研发计划项目课题以及甘肃省科技重大专项等省部级项目,作为项目骨干参与国家自然科学基金委创新研究群体、国家重大科研仪器研制项目、第二次青藏高原综合考察等项目。以第一发明人获批国家发明专利8项、美国发明专利1项、德国发明专利1项;2017年作为骨干成员入选首批全国高校黄大年式教师团队;2018年荣获甘肃省科技进步一等奖(4/12);2020年荣获甘肃省环境科学技术一等奖(3/9);2021年荣获兰州市优秀科技工作者称号;2022年荣获第十届甘肃青年科技奖、兰州大学国华青年英才奖;2023年荣获教育部国家研究生教学成果二等奖(5/15)。
黄忠伟教授立足于西北,在兰州大学建成了具有一定国际影响力、体系完备的激光雷达大气遥感研究中心,带领团队建设了“一带一路”气候与环境观测网(已建成7个国内站,4个国外站),该观测网将是丝绸之路经济带世界一流的气候与环境综合观测平台,并有望成为由兰州大学发起的国际大科学工程。
讲授课程:
1、国家精品课程《大气探测学》(本科生)
2、省级精品课程《雷达气象学》(本科生)
3、《大气遥感及应用》(研究生)
教育经历:
2003.09-2007.07 兰州大学物理科学与技术学院物理学专业(学士),导师:黄建平教授
2007.09-2012.07 兰州大学大气科学学院大气物理学与大气环境专业(博士),导师:黄建平教授
2009.10-2010.10 日本东北大学理学部(国家公派联合培养),合作导师:早坂忠裕教授
2010.10-2011.10 日本国立环境研究所大气遥感研究中心(国家公派联合培养),合作导师:杉本伸夫教授
2013.01-2013.06 台湾中央大学物理系(博士后),合作导师:倪简白教授
工作经历:
2009.09-2012.07 兰州大学大气科学学院 助教
2012.07-2016.07 兰州大学大气科学学院 讲师
2016.07-2019.11 兰州大学大气科学学院 副教授
2019.11-至今 兰州大学大气科学学院 教授
2018.09-2024.01 兰州大学大气科学学院 副院长
2024.01-至今 兰州大学大气科学学院 院长
荣誉获奖:
教育部国家级教学成果奖(2023年,5/15)
兰州大学国华青年英才奖(2022年)
第十届甘肃青年科技奖(2022年)
甘肃领军人才称号(2021年)
兰州市优秀科技工作者称号(2021年)
甘肃省环境科学技术一等奖(2020年,3/9)
兰州大学青年五四奖章(2020年)
兰州大学萃英学者(2019年)
教育部青年长江学者(2018年)
甘肃省科技进步一等奖(2018年,4/12)
甘肃省第九届大学生创新创业大赛二等奖(2018年,指导老师)
首批全国高校黄大年式教师团队(2017年,骨干成员)
兰州大学本科生毕业论文“优秀指导教师”称号(2016年)
兰州大学“优秀班主任”称号(2015年)
学术兼职:
第一届“中国环境科学学会地球环境系统科学观测专业委员会”副主任委员(2024.12-)
《大气与环境光学学报》编委(2024.12-)
中国气象学会理事(2024.06-)
《地球科学进展》编委(2024.09-2027.09)
甘肃省气象学会青年工作委员会副主任委员(2023.06-)
中国核学会计算物理分会第九届理事会理事(2023.10-)
《光学学报》青年编委(2023.01-2025.12)
国际大气环境遥感学会(“AERSS学会”)学会理事、第五工作组(Lidargroup)联合主席;(2022.01-)
《大气与环境光学学报》青年编委(2020.12-2024.12)
代表性论文(第一或通讯作者):
1. Xue, F., Huang, Z.*, Huo, X., Dong, Q., Li, Z., and Gu, Q., 2025: The diversity of airborne bacteria over the Tibet Plateau decreased by Taklimakan dust. Geophysical Research Letters, 52, e2024GL111830. doi.org/10.1029/ 2024GL111830
2. Huang, Z., Dong, Q., Xue, F., Qi, J., Yu, X., Maki, T., Du, P., Gu, Q., Tang, S., Shi, J., Bi, J., Zhou, T., and Huang, J.*, 2024: Large-scale Dust-Bioaerosol field observations in East Asia. Bulletin of the American Meteorological Society. 105(3). E501–E517. doi.org/10.1175/BAMS-D-23-0108.1
3. Liu, Q., Huang, Z.*, Liu, J., Chen, W., Dong, Q., Wu, S., Dai, G., Li, M., Li, W., Li, Z., Song, X., and Xie, Y., 2024: Validation of initial observation from the first spaceborne high-spectral-resolution lidar with a ground-based lidar network. Atmospheric Measurement Techniques, 17, 1403–1417, doi.org/10.5194/amt-17-1403-2024
4. Huang, Z., Yu, X., Liu, Q., Maki, T., Alam, K., Wang, Y., Xue, F., Tang, S., Du, P., Dong, Q., Wang, D., Huang, J.*, 2023: Bioaerosols in the atmosphere: A comprehensive review on detection methods, concentration and influencing factors. Science of The Total Environment 912, 168818. doi.org/10.1016/j.scitotenv.2023.168818
5. Qi, J., Huang, Z.*, Xue, F., Gao, Z., Maki, T., Zhang, Z., Liu, K., Ji, M., Liu, Y., 2023: Aridification alters the diversity of airborne bacteria in drylands of China. Atmospheric Environment 315, 120135. doi.org/10.1016/j.atmosenv.2023.120135
6. Ali, Md.A., Wang, Y., Bilal, M., Assiri, M.E., Islam, A.R.M.T., Malafaia, G., Huang, Z.*, Mhawish, A., Islam, M.N., Qiu, Z., Ahmed, R., Almazroui, M., 2023: Trace Gases over Land and Ocean Surfaces of China: Hotspots, Trends, and Source Contributions. Earth Systems and Environment, doi.org/10.1007/s41748-023-00354-0
7. Zhou, T., Zhou, X., Yang, Z., Córdoba-Jabonero, C., Wang, Y., Huang, Z.*, Da, P., Luo, Q., Zhang, Z., Shi, J., Bi, J., Alikhodja, H., 2023. Transboundary transport of non-east and East Asian dust observed at Dunhuang, northwest China. Atmospheric Environment 318, 120197. doi.org/10.1016/j.atmosenv.2023.120197
8. Wang, Y., Huang, Z.*, Zhou, T., Bi, J., Shi, J., 2023. Identification of fluorescent aerosol observed by a spectroscopic lidar over northwest China. Optics Express 31, 22157. doi.org/10.1364/OE.493557
9. Ali, Md.A., Huang, Z.*, Bilal, M., Assiri, M.E., Mhawish, A., Nichol, J.E., De Leeuw, G., Almazroui, M., Wang, Y., Alsubhi, Y., 2023. Long-term PM2.5 pollution over China: Identification of PM2.5 pollution hotspots and source contributions. Science of The Total Environment 893, 164871. doi.org/10.1016/j.scitotenv.2023.164871
10. Du, P., Huang, Z.*, Tang, S., Dong, Q., Bi, J., Yu, X., Gu, Q., 2023. Long‐Term Variation of Dust Devils in East Asia During 1959–2021. Journal of Geophysical Research: Atmospheres 128, e2022JD038013. https://doi.org/10.1029/2022JD038013
11. Huang, Z.*, Dong, Q., Chen, B., Wang, T., Bi, J., Zhou, T., Alam, K., Shi, J., Zhang, S., 2023. Method for retrieving range-resolved aerosol microphysical properties from polarization lidar measurements. Optics Express 31, 7599. doi.org/10.1364/OE.481252
12. Huang, Z., Li, M., Bi, J.*, Shen, X., Zhang, S., Liu, Q., 2023. Small lidar ratio of dust aerosol observed by Raman-polarization lidar near desert sources. Optics Express 31, 16909. doi.org/10.1364/OE.484501
13. Huang, Z., Shen, X., Tang, S., Zhou, T.*, Dong, Q., Zhang, S., Li, M., Wang, Y., 2023. Simulated depolarization ratios for dust and smoke at laser wavelengths: implications for lidar application. Optics Express 31, 10541. doi.org/10.1364/OE.484335
14. Zhang, S., Huang, Z.*, Alam, K., Li, M., Dong, Q., Wang, Y., Shen, X., Bi, J., Zhang, J., Li, W., Li, Z., Wang, W., Cui, Z., Song, X., 2023. Derived Profiles of CCN and INP Number Concentrations in the Taklimakan Desert via Combined Polarization Lidar, Sun-Photometer, and Radiosonde Observations. Remote Sensing 15, 1216. doi.org/10.3390/rs15051216
15. Liu, Q., Huang, Z.*, Hu, Z.*, Dong, Q., Li, S., 2022. Long‐Range Transport and Evolution of Saharan Dust Over East Asia From 2007 to 2020. Journal of Geophysical Research: Atmospheres 127, e2022JD036974. doi.org/10.1029/2022JD036974
16. 黄忠伟, 王雍恺, 闭建荣, 王天河, 李武仁, 李泽, 周天, 2022: 气溶胶激光雷达的国内外研究进展与展望, 遥感学报, 26(5), doi: 10.11834/jrs.20221388.
17. Zhang, S., Huang, Z.*, Li, M., Shen, X., Wang, Y., Dong, Q., Bi, J., Zhang, J., Li, W., Li, Z., Song, X., 2022. Vertical Structure of Dust Aerosols Observed by a Ground-Based Raman Lidar with Polarization Capabilities in the Center of the Taklimakan Desert. Remote Sensing 14, 2461. doi.org/10.3390/rs14102461
18. Dong, Q., Huang, Z.*, Li, W., Li, Z., Song, X., Liu, W., Wang, T., Bi, J., Shi, J., 2022. Polarization Lidar Measurements of Dust Optical Properties at the Junction of the Taklimakan Desert–Tibetan Plateau. Remote Sensing 14, 558. doi.org/10.3390/rs14030558
19. Qi, S., Huang, Z.*, Ma, X., Huang, J., Zhou, T., Zhang, S., Dong, Q., Bi, J., Shi, J., 2021. Classification of atmospheric aerosols and clouds by use of dual-polarization lidar measurements. Optics Express 29, 23461. doi.org/10.1364/OE.430456
20. Huang, Z., Huang, J.*, Gu, Q., Du, P., Liang, H., Dong, Q., 2020. Optimal temperature zone for the dispersal of COVID-19. Science of The Total Environment 736, 139487. doi.org/10.1016/j.scitotenv.2020.139487
21. Qi, J., Huang, Z.*, Maki, T., Kang, S., Guo, J., Liu, K., Liu, Y., 2020. Airborne bacterial communities over the Tibetan and Mongolian Plateaus: variations and their possible sources. Atmospheric Research 247, 105215. doi.org/10.1016/j.atmosres.2020.105215
22. Ma, X., Huang, Z.*, Qi, S., Huang, J., Zhang, S., Dong, Q., Wang, X., 2020. Ten-year global particulate mass concentration derived from space-borne CALIPSO lidar observations. Science of The Total Environment 721, 137699. doi.org/10.1016/j.scitotenv.2020.137699
23. Huang, Z., Qi, S., Zhou, T.*, Dong, Q., Ma, X., Zhang, S., Bi, J., Shi, J., 2020. Investigation of aerosol absorption with dual-polarization lidar observations. Optics Express 28, 7028. doi.org/10.1364/OE.390475
24. Huang, Z.*, Nee, J.-B.*, Chiang, C.-W., Zhang, S., Jin, H., Wang, W., Zhou, T., 2018. Real-Time Observations of Dust–Cloud Interactions Based on Polarization and Raman Lidar Measurements. Remote Sensing 10, 1017. doi.org/10.3390/rs10071017
25. Tang, K., Huang, Z.*, Huang, J., Maki, T., Zhang, S., Shimizu, A., Ma, X., Shi, J., Bi, J., Zhou, T., Wang, G., Zhang, L., 2018. Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign. Atmospheric Chemistry and Physics, 18, 7131–7148. doi.org/10.5194/acp-18-7131-2018
26. Huang, Z., Huang, J.*, Hayasaka, T., Wang, S., Zhou, T., Jin, H., 2015. Short-cut transport path for Asian dust directly to the Arctic: a case study. Environmental Research Letters, 10, 114018. doi.org/10.1088/1748-9326/10/11/114018
27. Huang, Z., Huang, J.*, Bi, J., Wang, G., Wang, W., Fu, Q., Li, Z., Tsay, S., Shi, J., 2010. Dust aerosol vertical structure measurements using three MPL lidars during 2008 China‐U.S. joint dust field experiment. Journal of Geophysical Research, 115, 2009JD013273 doi.org/10.1029/2009JD013273
合作者论文:
1. Pan, H., Huang, J.*, Li, J., Huang, Z., Wang, M., Ali. Mamtimin., Huo, W., Yang, Fan, Zhou, Tian., and Kanike Raghavendra Kumar, 2024: The Tibetan Plateau space-based tropospheric aerosol climatology: 2007–2020. Earth System Science Data, 16, 1185–1207, doi.org/10.5194/essd-16-1185-2024
2. Jin, S., Ma, Y.*, Huang, Z., Huang, J., Gong, W., Liu, B., Wang, W., Fan, R., Li, H., 2023. A comprehensive reappraisal of long-term aerosol characteristics, trends, and variability in Asia. Atmospheric Chemistry and Physics, 23, 8187–8210. doi.org/10.5194/acp-23-8187-2023
3. Chen, B.*, Dong, L., Huang, J., Wang, Y., Jing, Z., Yan, W., Wang, X., Song, Z., Huang, Z., Guan, X., Dong, X., Huang, Y., 2023. Analysis of Long‐Term Trends in the Vertical Distribution and Transport Paths of Atmospheric Aerosols in Typical Regions of China Using 15 Years of CALIOP Data. Journal of Geophysical Research: Atmospheres 128, e2022JD038066. doi.org/10.1029/2022JD038066
4. Ma, J., Li, R.*, Liu, H., Huang, Z., Wu, T., Wu, X., Zhao, L., Hu, G., Xiao, Y., Jiao, Y., Liu, W., Wang, S., Shi, J., Qiao, Y., 2023. Evaluation of CLM5.0 for simulating surface energy budget and soil hydrothermal regime in permafrost regions of the Qinghai-Tibet Plateau. Agricultural and Forest Meteorology 332, 109380. doi.org/10.1016/j.agrformet.2023.109380
5. Haq, M., Iqbal, M.J., Alam, K., Huang, Z., Blaschke, T., Qureshi, S., Muhammad, S.*, 2023. Assessment of Runoff Components of River Flow in the Karakoram Mountains, Pakistan, during 1995–2010. Remote Sensing 15, 399. doi.org/10.3390/rs15020399
6. Cai, J., Zhou, Z., Huang, Z., Dai, W., Yu, F.R., 2023. Privacy-Preserving Deployment Mechanism for Service Function Chains Across Multiple Domains. IEEE Trans. Netw. Serv. Manage. 1–1. doi.org/10.1109/TNSM.2023.3311587
7. 廖家艳,周天,韩璧森,黄忠伟,闭建荣,2023:我国西北半干旱区气溶胶类型的地基激光雷达判别,干旱气象,41(04),570-578
8. Dai, G., Wu, S., Long, W., Liu, J., Xie, Y., Sun, K., Meng, F., Song, X.*, Huang, Z., Chen, W., 2023. Aerosols and Clouds data processing and optical properties retrieval algorithms for the spaceborne ACDL/DQ-1. Aerosols/Remote Sensing/Data Processing and Information Retrieval. doi.org/10.5194/egusphere-2023-2182
9. 黄建平,张北斗,王丹凤,黄忠伟,陈思宇,陈 斌,李 旭,胡淑娟,2022:21世纪交叉学科的新方向:气候变化与重大疫情监测预警. 兰州大学学报(医学版),48(11):1-3.DOI:10.13885/j.issn.1000-2812.2022.11.001
10. Ahmad, M., Hussain, K., Nasir, J., Huang, Z., Alam*, K., Liaquat, S., Wang, P., Hussain, W., Mihaylova, L., Ali, A., Farhan, S.B., 2022. Air Quality Assessment along China-Pakistan Economic Corridor at the Confluence of Himalaya-Karakoram-Hindukush. Atmosphere 13, 1994. doi.org/10.3390/atmos13121994
11. Ma, J., Li, R.*, Huang, Z., Wu, T., Wu, X., Zhao, L., Liu, H., Hu, G., Xiao, Y., Du, Y., Yang, S., Liu, W., Jiao, Y., Wang, S., 2022. Evaluation and spatio-temporal analysis of surface energy flux in permafrost regions over the Qinghai-Tibet Plateau and Arctic using CMIP6 models. International Journal of Digital Earth 15, 1947–1965. doi.org/10.1080/17538947.2022.2142307
12. Chen, S., Tong, B., Russell, L.M., Wei, J., Guo, J., Mao, F., Liu, D.*, Huang, Z., Xie, Y., Qi, B., Zhang, H., Sun, Y., Zhang, B., Xu, C., Wu, L., Liu, D., 2022. Lidar-based daytime boundary layer height variation and impact on the regional satellite-based PM2.5 estimate. Remote Sensing of Environment 281, 113224. doi.org/10.1016/j.rse.2022.113224
13. Maki, T.*, Noda, J., Morimoto, K., Aoki, K., Kurosaki, Y., Huang, Z., Chen, B., Matsuki, A., Miyata, H., Mitarai, S., 2022. Long-range transport of airborne bacteria over East Asia: Asian dust events carry potentially nontuberculous Mycobacterium populations. Environment International 168, 107471. doi.org/10.1016/j.envint.2022.107471
14. Anwar, K., Alam, K.*, Liu, Yangang, Huang, Z., Huang, J., Liu, Yuzhi, 2022. Analysis of aerosol cloud interactions with a consistent signal of meteorology and other influencing parameters. Atmospheric Research 275, 106241. doi.org/10.1016/j.atmosres.2022.106241
15. Liu, C., Huang, Z., Huang, J.*, Liang, C., Ding, L., Lian, X., Liu, X., Zhang, L., Wang, D., 2022. Comparison of PM2.5 and CO2 Concentrations in Large Cities of China during the COVID-19 Lockdown. Advances in Atmospheric Science, 39, 861–875. doi.org/10.1007/s00376-021-1281-x
16. Usman, F., Zeb, B., Alam, K.*, Huang, Z., Shah, A., Ahmad, I., Ullah, S., 2022. In-Depth Analysis of Physicochemical Properties of Particulate Matter (PM10, PM2.5 and PM1) and Its Characterization through FTIR, XRD and SEM–EDX Techniques in the Foothills of the Hindu Kush Region of Northern Pakistan. Atmosphere 13, 124. doi.org/10.3390/atmos13010124
17. Ma, J., Li, R.*, Liu, H., Huang, Z., Wu, T., Hu, G., Xiao, Y., Zhao, L., Du, Y., Yang, S., 2022. The Surface Energy Budget and Its Impact on the Freeze-thaw Processes of Active Layer in Permafrost Regions of the Qinghai-Tibetan Plateau. Advances in Atmospheric Science, 39, 189–200. doi.org/10.1007/s00376-021-1066-2
18. Han, B., Zhou, T.*, Zhou, X., Fang, S., Huang, J., He, Q., Huang, Z., Wang, M., 2022. A New Algorithm of Atmospheric Boundary Layer Height Determined from Polarization Lidar. Remote Sensing 14, 5436. https://doi.org/10.3390/rs14215436
19. Bi, J.*, Li, Z., Zuo, D., Yang, F., Li, B., Ma, J., Huang, Z., He, Q., 2022. Dust Aerosol Vertical Profiles in the Hinterland of Taklimakan Desert During Summer 2019. Frontiers in Environmental Science, 10, 851915. doi.org/10.3389/fenvs.2022.851915
20. Qi, J., Ji, M., Wang, W., Zhang, Z., Liu, K., Huang, Z., Liu, Y.*, 2022. Effect of Indian monsoon on the glacial airborne bacteria over the Tibetan Plateau. Science of The Total Environment 831, 154980. doi.org/10.1016/j.scitotenv.2022.154980
21. Han, Y., Wang, T.*, Tan, R., Tang, J., Wang, C., He, S., Dong, Y., Huang, Z., Bi, J., 2022. CALIOP-Based Quantification of Central Asian Dust Transport. Remote Sensing 14, 1416. doi.org/10.3390/rs14061416
22. Bi, J.*, Zuo, D., Yang, F., Zhang, L., Huang, Z., Wang, T., 2022. Surface radiation characteristics and downward cloud radiative forcing in southern Xinjiang during summer 2019. Meteorology and Atmospheric Physics, 134, 11. doi.org/10.1007/s00703-021-00847-5
23. Yang, L., Zhang, S.*, Huang, Z., Yang, Y., Wang, L., Han, W., Li, X., 2021. Characteristics of Dust Events in China from 2015 to 2020. Atmosphere 12, 952. doi.org/10.3390/atmos12080952
24. Wen, H., Zhou, Y., Xu, X., Wang, T., Chen, Quanliang, Chen, Qingcai, Li, W., Wang, Z., Huang, Z., Zhou, T., Shi, J., Bi, J., Ji, M., Wang, X.*, 2021. Water-soluble brown carbon in atmospheric aerosols along the transport pathway of Asian dust: Optical properties, chemical compositions, and potential sources. Science of The Total Environment 789, 147971. doi.org/10.1016/j.scitotenv.2021.147971
25. Yang, L., Hu, Z.*, Huang, Z., Wang, L., Han, W., Yang, Y., Tao, H., Wang, J., 2021. Detection of a Dust Storm in 2020 by a Multi-Observation Platform over the Northwest China. Remote Sensing 13, 1056. doi.org/10.3390/rs13061056
26. Zhang, L., Tang, C., Huang, J., Du, T., Guan, X., Tian, P., Shi, J., Cao, X., Huang, Z., Guo , Q., Zhang, H., Wang, M., Zeng, H., Wang, F., and Dolkar, P., 2021. Unexpected High Absorption of Atmospheric Aerosols Over a Western Tibetan Plateau Site in Summer. Journal of Geophysical Research: Atmospheres, 126, e2020JD033286. doi. org/10.1029/2020JD033286
27. Wang, T., Han, Y., Hua, W., Tang, J., Huang, J.*, Zhou, T., Huang, Z., Bi, J., Xie, H., 2021. Profiling Dust Mass Concentration in Northwest China Using a Joint Lidar and Sun-Photometer Setting. Remote Sensing 13, 1099. doi.org/10.3390/rs13061099
28. Liu, X., Huang, J.*, Li, C., Zhao, Y., Wang, D., Huang, Z., Yang, K., 2021. The role of seasonality in the spread of COVID-19 pandemic. Environmental Research 195, 110874. doi.org/10.1016/j.envres.2021.110874
29. Zhou, T., Xie, H., Jiang, T., Huang, J.*, Bi, J., Huang, Z., Shi, J., 2021. Seasonal characteristics of aerosol vertical structure and autumn enhancement of non-spherical particle over the semi-arid region of northwest China. Atmospheric Environment 244, 117912. doi.org/10.1016/j.atmosenv.2020.117912
30. Huang, J.*, Zhang, L., Liu, X., Wei, Y., Liu, C., Lian, X., Huang, Z., Chou, J., Liu, Xingrong, Li, X., Yang, K., Wang, J., Liang, H., Gu, Q., Du, P., Zhang, T., 2020. Global prediction system for COVID-19 pandemic. Science Bulletin 65, 1884–1887. doi.org/10.1016/j.scib.2020.08.002
31. Zhou, T., Xie, H., Bi, J., Huang, Z., Huang, J.*, Shi, J., Zhang, B., Zhang, W., 2018. Lidar Measurements of Dust Aerosols during Three Field Campaigns in 2010, 2011 and 2012 over Northwestern China. Atmosphere 9, 173. doi.org/10.3390/atmos9050173
32. Wang, X.*, Wen, H., Shi, J., Bi, J., Huang, Z., Zhang, B., Zhou, T., Fu, K., Chen, Q., Xin, J., 2018. Optical and microphysical properties of natural mineral dust and anthropogenic soil dust near dust source regions over northwestern China. Atmospheric Chemistry and Physics, 18, 2119–2138. doi.org/10.5194/acp-18-2119-2018
33. Xie, H., Zhou, T., Fu, Q., Huang, J.*, Huang, Z., Bi, J., Shi, J., Zhang, B., Ge, J., 2017. Automated detection of cloud and aerosol features with SACOL micro-pulse lidar in northwest China. Optics Express 25, 30732. doi.org/10.1364/OE.25.030732
34. Gao, X., Cao, X., Tian, P., Zhang, L.*, Huang, Z., Zhou, T., 2017. Combined observation of a dust storm over the Loess Plateau using a dual-wavelength lidar and an aethalometer. Atmospheric Pollution Research 8, 1103–1112. doi.org/10.1016/j.apr.2017.04.010
35. Li, H., Yang, Y., Hu, X.-M., Huang, Z., Wang, G., Zhang, B., 2017. Application of Convective Condensation Level Limiter in Convective Boundary Layer Height Retrieval Based on Lidar Data. Atmosphere 8, 79. doi.org/10.3390/atmos8040079
36. Li, H., Yang, Y.*, Hu, X., Huang, Z., Wang, G., Zhang, B., Zhang, T., 2017. Evaluation of retrieval methods of daytime convective boundary layer height based on lidar data. Journal of Geophysical Research: Atmospheres 122, 4578–4593. doi.org/10.1002/2016JD025620
37. Tian, P., Cao, X., Zhang, L.*, Sun, N., Sun, L., Logan, T., Shi, J., Wang, Y., Ji, Y., Lin, Y., Huang, Z., Zhou, T., Shi, Y., Zhang, R., 2017. Aerosol vertical distribution and optical properties over China from long-term satellite and ground-based remote sensing. Atmospheric Chemistry and Physics, 17, 2509–2523. doi.org/10.5194/acp-17-2509-2017
38. Tian, P., Cao, X., Zhang, L.*, Sun, N., Sun, L., Logan, T., Shi, J., Wang, Y., Ji, Y., Lin, Y., Huang, Z., Zhou, T., Shi, Y., Zhang, R., 2016. Seasonal and spatial variations in aerosol vertical distribution andoptical properties over China from long-term satellite and groundbasedremote sensing. Atmospheric Chemistry and Physics Discussions, doi.org/10.5194/acp-2016-749
39. Tian, P., Cao, X., Zhang, L.*, Wang, H., Shi, J., Huang, Z., Zhou, T., Liu, H., 2015. Observation and simulation study of atmospheric aerosol nonsphericity over the Loess Plateau in northwest China. Atmospheric Environment 117, 212–219. doi.org/10.1016/j.atmosenv.2015.07.020
40. Chen, S., Zhao, C., Qian, Y., Leung, L.R., Huang, J.*, Huang, Z., Bi, J., Zhang, W., Shi, J., Yang, L., Li, D., Li, J., 2014. Regional modeling of dust mass balance and radiative forcing over East Asia using WRF-Chem. Aeolian Research 15, 15–30. doi.org/10.1016/j.aeolia.2014.02.001
41. Sugimoto, N.*, Huang, Z., 2014. Lidar methods for observing mineral dust. Journal of Meteorological Research, 28, 173–184 doi.org/10.1007/s13351-014-3068-9
媒体报道:
5.【YouTube】Tourism and Folk Crafts' - Opening of the Scientific Polygon of the PhTl NAST. (2023-12-13)
联系方式:
通讯地址:甘肃省兰州市天水南路222号兰州大学大气科学学院
邮政邮编:730000
办公电话:0931-8912979
电子邮箱:huangzhongwei@lzu.edu.cnzu.edu.cn